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phenomena. For example, a gas moving under the action of partial pressure brings into 
motion a gas at rest which has no partial pressure, This is the case of a molecular ejec- 
tor. The effectiveness of the performance of a molecular ejector can be determined 
using the theory expounded above. In a number of cases a gas can be set into motion 

which opposes its pressure gradient. 
The theory developed here and the phenomena discovered play a major part in a num- 

ber of practically important problems, and in particular in the problems of separating the 

gas and liquid mixtures by means of porous and semipermeable membranes, 
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A condition governing crack growth in a piezoelectric material is formulated, 
and the problem of tunnel crack development on the boundary between a piezo- 
electric ceramic and an elastic isotropic conductor is considered as an illustra- 
tion The stress components, displacements, electric field potential, displacement 
of the electric induction, and the ma~i~de of the critical load associated with 

crack growth are determined. 

1, Fracture condition for pisroalactrlc msdis. The mechanical 
stress tensor components o ij in the static loading of a piezoelecaic medium are func- 
tions of not only the geometric deformations but also of the electrical field. 

Let us select the electrical field and the strain tensor components as independent vari- 

ables, and let us represent the equation of the piezoelectric medium in crystal physics 
Cartesian 2, y, z coordinates as follows [l]: 

E 
qj = CijklEkl - +@h, Di I= eXliEtil + EikSEt (i, j, it, E = 1,2, 3) (1.1) 

Here C& are the elastic moduli of the medium. eijk are the piezoelectric mod& v 
8 

~ik are adiabatic dielectric constants of the medium, ckl are strain tensor compon- 

ents, oij are stress tensor components, El, are electrical field strength components, and 

Di are the vector components of the electrical induction. 
Neglecting volume forces and the Maxwell equations in the absence of free charges, 

the equilibrium equations of the medium are : 
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dGjjif3Xj = 0, dDj/dXj = 0 (1.2) 

To deduce the additional condition governing crack growth in a piezoelectric medi- 

um, let us introduce the external macroscopic energy flux dA*n originating as a re- 

sult of crack propagation. 
Analogously to [Z], we examine two possible states of a piezoelectric body (Fig. 1) 

corresponding to the instants t (solid lines) and tr = t + At (dashed lines). The boun- 

dary conditions for the linearized problem can be formulated on the surface 2 + AX 
(AZ is the increment of the bilateral surface of discontinuity). Let u {ui} denote the 
vector of displacement from a certain initial state to the state corresponding to the ins- 

tant t, and u1 (uil} the vector of the displacement from the same initial state to the 
state corresponding to the instant tl. 

On the basis of the equations of motion of the medium (1.2). the following equalities : 

-$ (%l + %f = 0, -&(Da -Q)= 0 

are satisfied for points of the volume V at the instants t and tl Multiplying the first 
of these equalities by ‘/e (ui,- ui) and the second by ‘/a((~~ -I- cp),. we add the results 

and integrate over the whole body volume (cp is the electrical field potential. E, = 
gradq). After obvious manipulations, we obtain 

1 
7 .2# s (%jl + oij) (%I- &) @S + $ S (r>ji - Dj) (qJl+ Cp) r$S-3 (1.3) 

n+XZ X+-AZ 

t l I(%1 + Q<jJ(Eijl - &ii) + (D~I - Dj)(Ej, + Ei)l do 

d 

Using the relationship 
oijaijl + EjDjl = oijlaij + EjlDj 

which is verified directly by substitution of (1.1) therein, it is easy to show that the right 
side of (1.3) is the change in internal energy 

when making the transition from one state to 
another, In the absence of an external heat 

flux, (1.3) can be written thus [ 21: 

Fig. 1 

Here dI.$J is the increment in the internal 

energy, dA is the sum of the work of the 
external surface forces and the field on the 

whole boundary (up to the appearance of frac- 
ture) of the body 2, and the expression for 

_ 
the energy flux in the formation of fracture dd~n can be written as 

1 

s 
CijuilRjdS + + ’ dAac = 2 

AZ 
I 

6ij (l&ix - Ui) ?&jdS + 
AC 

(1.4) 

~Dj~njdS + $ j 91 (Dj, - Dj) njdS 
Ailr: 



138 B.A.Xudriavtsev, V.Z.Parton and V.I.Rakltin 

Taken into account in this latter expression is the fact that the following equalities 

are valid because of the continuity of the displacements rhjtthe stresses CTij, the poten- 
tial cp and the electric induction Dj on:AX . 

It is known from fracture mechanics p2 - 43 that the energy flux is related to the sur- 
face energy <.y is the intensity of the fracture surface energy) dU,= y (AZ, -t_ KZ,,. 

The crack propagation condition is 

dU,-, =L - d&r. (1.5) 

in the statistical case and for an adiabatic process. In particular, if the crack edges are 
stress-free, condition (I, 5) yields: 

r(A&+A$I= -+ 
( I 

s~j~~~n~~ + 
AGI AC, I 

~~,~~j~~+ t1e61 

ACi.AZ~ 

AXi,, cPl(Dll-Dj>njds 
1 % 

For example, the fracture condition (1.6) can he represented thus : 

for a crack located along the x -axis ( 1 z 1 \c a) in the plane strain case. Here aiio, 
Djo, qO are parameters determined from the solution of the electroelasticity problem 
for the body region under consideration, but without a crack , and the integration is per- 
formed over both edges of the crack. 

2, Tunnel crack on tha boundrry with a conductor, Pormulr- 
tion of the problem, Let us examine an unbounded half-space z > 0 of a piezo- 
electric material. A rectilinear crack is located in the z = 0 plane of isotropy of a 
transversely isotropic medium (texture of the class co - m, uysrals of hexagonal syngony 
of class 6. m) on the boundary with an elastic isotropic conductor (z < O), where the 
crack edges - a ,< x < a, - CCJ < y < 00 are laird-free. A constant stress Q, 
parallel to the z -axis is given constant at infinity. The problem is considered for the 
plane strain case. 

Following [ 11, it is possible to rewrite (1.1) in matrix form if the subscripts are replaced 
according to the following scheme : 

11 -1, 23 =32-4 

22 - 2, 13 = 31 - 5 

33 w.3, 12 = 21 N 6 

The matrices of the elastic moduli CijE, the piezoelectric moduli eikr and dielectric 
permeabilities eIrlS (i, j = 1, 2 . . .6; k, I = 1, 2, 3) for the textures and crystals 
under consideration are 
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(2.1) 

Cl1 E Cl2 E Cl3 EO 0 0 0 0 e31 

Cl2 E Cl1 E CIBE 0 0 0 0 0 e31 

Cl3 C33 0 0 0 0 e33 = 
lC.ij* I/ II4 = OE CEE OE Co 0 0 0 e13 0 

0 0 0 0 c**E' 0 eI5 0 0 
0 0 0 

0 0 0 0 0 +(Q - %a9 

l\.slr:jI = diag h1J, EI~S, 53'1 

On the basis of (1. l), (2. l), the equations of a piezoelectric medium for the case of plane 

strain defined by the displacement II+ (u+ (s, z), 0, W+ (z, z)} (z > 0) and the po- 
tential u, (CZ, 2) are 

o;, = CllE (2.2) 

Dz = e3I$ -I- e33 ?$ + E338 $ 

Taking account of (1, Z), (2,2), we obtain the following fundamental equations to inves- 
tigate the eleetroelasticity problem (z > 0): 

E n.l+ 
-p + 54 $$+( aZw+ 

Cl1 C13E + C44-9~ - 
8% 

(e31 + eda = 0 (2.3) 

(C13* + GE) -$$ + CaE $$ + c33E $$- - elb 3 - es3 $$. = 0 

(e31 -t 4 g -I- q, s 
a%o+ 
- + e33 az2 + hS a22 22. + E335 $$ r=. 0 

For the isotropic conducting medium (z Q 0) with the displacement U’ {u- (z, z), 

0, w- (2, z)) for points of the medium, we have 

(2.4) 

where h, p are Lame coefficients, and the tensor components (2.4) satisfy the equilibrium 

equations (1.2). 
By virtue of the linearity of (1.2). (2.2) - (2-4). the solution of the formulated static 

problem can be sought as the sum of solutions of the following two problems: the prob- 
lem of determining the stress and strain states, the electric field components and the 
induction in a continuous piezoelecaic medium reinforced everywhere in the plane with 
an isotropic medium subjected to the constant tensile stress d, at infinity (A) , and the 
problem of determining the states of media with a crack when external surface forces 
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and a field act on the crack edges (B). 
It is easy to verify that rhe solution of the problem A is 

u+ =u- zo,+ =oxz+ =:o,- =crxrr- =E, =DD, =0 (2.5) 

6 -+E 
ZL % 

-= Go, w+ =z 
e31 

e31c.w 
E 

- e33cu 
_Jj 602 

1 CllE 

w- = - 002, 
h$2p 

C&I,== 

e31C33 
Ii 

- e33eu 
E QOZ 

e31.533 + E333c83 
E 

I),= B 

en193 - P3333clY 
.E =Q 

The solution of problem B can be obtained for the following 
dary between the two media: 

ozz+ = o‘zz-r o,,* = a*,-, Q, = 0, z zz. 0, - 

conditions on the bow- 

-oo<x<m @. 6) 

u+ =u-, w+ =w-; z =o, txl>a 

3, Syrtsm of ringulrr integtrl equations, Let us seek the solution of 
(2.3) for z > 0 by using the Fourier integral ~a~form 

00 

z&*(5,2) = (3.1) 
0 

--“p 
w+ (5, z) = 

2 
f a n ~(~,phvxdp 

0 

m 

rp(x,zl= Q(p,pz)cospxdp, .z>o, x&O 
0 

S~dtu~~g (3.1) into (2,3), we obtain a system of ordinary differential equations to 

determine the functions U, W, @. We write particular solutions of this system for 
z >, 0 which satisfy the conditions at infinity as 

U = aewkz, W = /3eqkZ, cf, = ,,e-“2 

Here k is the root with positive real part of the bicubic characteristic equation 

det 11 akZ 11 = o (3.2) 

all = c44 “12 - CrrE, n,, = - as1 = (C1sE -!- c41 E, k, a,, = 

cssEk2 - epaE 

a13 = - a31 
= - (es1 + e15) k, ass = - as% = 

- es3k2 + e15, a,,=== +‘k’ - Ells 
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An analysis of (3.2) shows that it has two real roots f k, and four pairwise conjugate 

complex roots I+ 6 f &,, , for known piezoceramics in the media classes under consi- 

deration, where k,, 6, 0 > 0. The constants a (k), @ (k), y (k) which are a solu- 
tion of the homogeneous system of equations with matrice (( akl 11 are defined by the for- 
mulas 

a = a12a22 - a,,a,,, p *= - a11a23 - a,,a,,, y = alla22 + aG 

Therefore, the general solution for U, W, @ can be represented as 

Here 4 tih BI (P), cl @I are functions to be determined from the boundary condi- 
tions. 

Using (3.1) and (3.3), we obtain the following expressions for the displacement and 
potential : 

ut (% 2) = vz f [wb (p) e-klpz + (az& (PI- az& (p)) t+pz x (3.4) 

CoS @pz -I- (%2i (p) + a& (p)) e-sPy sin opz] sin px dp 

w+ (3&z) = 
v’s z “p [PA(P) e-klpz + (WI (P) - P22G (PM e-2~~ x 

CDS @Pz + (I322B: (p) + B2G (p)) r8pz sin wpz] cos px clp 

cp(&d= v-5 -$ m [TI& (P) e-k1pz + (T&I (P) - raaG (p)) @pz x 

ws @Pz -t (r22k (PI -I- TZICI (p)) e-6pr sin wpz] cos px dp 

On the basis of (2.2)and (3.4) _ m 

w+ (~0) = r/G 1 rP,A, (P) + I3281 (P> - P22C1 (PM ~0s PX do 
0 

u+ (x,0) = 
1/I 

$- y PA (PI -I- az& (P) - %&I (P)l sin PX dP 
0 

cp (x, 0) = -f$ [ 171-41 (P) + r2& (P) - 722G b-41 ~0s PX do 
0 
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ms-maam%0 
62S.532 G(P)] P cos pz dp 

where we have ~~~od~ced the notation 

ml = e15yl - C*P (~~~1 + PI) 

m, = e15gzI - ca4 E (a,,6 - a220 -+- P21) 

mS = %5?,, - 9 (a226 + %w -i- PZJ 

and used the equalities 

C&xl - c 33Ek'db 
ml 

+&,T, = kl 

Cl3 E%!l- C3sE(P2d - Pzzw> + q&2,6 - ypzw)= wg--;w 

@%i? - CSS~(~~S~ -t Pd) i- q&r& + yzlw) = m$;ziO 

We represent the solution of the equilibrium equations (1.2) for z < 0 as 

~-(r,z)=~~~[-AA,(p~+3~(P)(~-pa)]e”cospsdp 
0 

Here A2 (p), & (p) are functions to be determined from the boundary conditio~s(Z.6)~ 
On the basis of (2.4) we obtain by using (3.5) 

Do 

u-(x, 0) = A, (p) sin px dp (3.6) 

0 

Satisfying the continuity conditions (2.6) on the interface z = 0 of the two media,we 
obtain 

Here 
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6, == m,y,, - m3y1r 62 = %?J,, - m,-ii21 

6, = 
m36 

+22- *2+y 717 
a4 1= b=zSf m3o)r22--(m3S-- m2o)T21 

B2+ 02 

We introduce the functions 

w (2) = Wf (s, 0) - w- (x,0), U (x) = u+tz, 0) - u- (G 0) 

and by satisfying the remaining conditions in (2.6) we obtain a system of dual Integral 
equations for the functions A, (JJ), & (JJ) (3.8) 

(3.9) 

6 fZ [6,-4,(p)+ 6,&(p)] sin psdp I= - 50r O<x<a 
0 

Here 

[S,ill (p) + S& @)I sin px @ = 0, z > c (3.11) 

65 = P1rzOz 
61 

- P22r1 - 2 (h + p) - 
63 (A + 2p.) 
21” (h + p) 

43 = P21r22 
& fko"i-Zp) 

- p22T21 - 2 (1, + p) - 2p (h -j-P) 

b(h-k 21") 
68 = %1722 - azzrz1- @(h+pL) - &&) 

Let us show that the system of dual integral equations (3.8) - (3.11) can be reduced 

to a system of singular integral equations with Cauchy kernels, We represent the rela- 
tionships (3. IO), (3.11) as 

m 

s [43Al (PI + WI ($41 cos ZJxdp = 722 
O<X<n (3.12) 

0 
0, r>a 

00 

s I&& (P) + Wb (p)j sin px dp = 
\ 722 I/+cxt, O<r<a 

0 
1 0, x>ra 

and use the following formal representations of generalized functions: 

~~sinplsin~~dp=6(r--1), qCcosptcorpldp=6j.T--tB 

0 0” 

d y 

7-z (S sin pt sin px.+ )=&(+lnIsI) 

0 
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Or co . 
I sin ptcospxdp = & 

0 

We express d,(p) and B, (P) from (3.12) and convert (3.8). (3.9) to the form 

a 

g,,w (X) + g,, 4 5 J$-$ = G (3.13) 

0 
a 
l w(l)cGddt 

- g2&j t*- 39 
-i_ g,,u@) = 60X, O<(z<n 

a 

(co is a constant which will be determined below). Nere 

It is seen from (3-12) that W (-- x) -= EU (5) and u f- z> ~= - U(Z), and therefore 

0 --LI 0 ---a 

Substituting these exFessi0n.s into (3.13). we obtain the following system of singutar 
integral equations with Cauchy kernels for the fiction w (z), u (2): 

(3.14) 

4, Sa,lutfon of the slsctroelarticity problem. Let us turn to the SOIU- 
tion of the system of integral equations (3,141, (3.15). Multiplying (3.15) by ig, and 
adding to (3.14), we obtain a single integral equation 

We note that for real piezoelectric and elastic media 

RH ! g12 > 0, g2x i g,z.> 0, i$ > 1 

For example, for the piezoceramic composite PZT-4 111 and steel (elastic modulus 
E = 20 x 10l" N/m2 and Poisson’s ratio 1: =r 0.25) 

g,, = Q.rt.4 x,$O'O N@, g12 = 6.1 X Iox0 Nh1', beI m-7 2.9 x$@~N,?$ 

g,,2 == o.f$ X iozo &J,k', gl = 1.6, g I 3; 
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Following [5]* to solve (4-l) we introduce the function 

which is analytic in the complex plane with a crack along the segment - Iz \c Z < U 
of the real axis. The boundary values of the continuous extension 8’ (2) on this segment 

to the left and right are determined by the Sokhotskii-Plemelj formulas 
n 

F+(2)+F-(z&- 1 -$g$ F(+-F+(s)=f(x) (4.2) 
--a 

After substituting (4.2) into (4.1). we obtain the Riemann boundary value problem 

(4.3) 

Let us determine the particular solution of the homogeneous Riemann problem bounded 
near the ends 5 = i: U and vanishing thereon, as 

x (2) -_ (2 f #*-ix (2 - a)‘/z+zx, x=&Ins 

Then the solution of the problem (4.3) bounded near the endpoints becomes 

-a 

Here X "(x) is the value of X (z) on the left edge of the crack. Since the differences 
between the displacementsrcl and ZJ vanish at infinity in the problem under consideration, 

it should be required that P !oo) = 0, which results in the condition 

Using the methods of evaluating integrals [5J, we obtain 

G = ~2xm, 

(4.5) 

(4.31 
and taking account of (4,S) we obtain the general solution of the boundary value prob- 

lem (4.3) from (4.4) in the following form: 

F (2) = - i&oo[X(z) - 2 + i2ax] 

Substituting (4.7) into (4, Z), we find 

f(TC)=W(Z)+iglu(z)=-i- zg!& 60 lx+ (4 - AX’(Z)] 

(4.7) 

“, f (t) dt a t-x =+po[x+(.T)+x-(5)-222 + i4ax] (4.9) 
--a 

X* (2~) =& ieTxX I/a2 - 39 - (S)? 1zj<a 

x+(iC)=x-(P)=JL2-.~ z-_a -ix, (x-u) x>a 

Therefore, the stresses, displacements, and electrical field components can be obtained 

explicitly at each point of the medium. In particular, the difference between the dis- 
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placements of the crack edges w (x) and the normal stresses ozz (a& 0) are represent- 
able by the following expressions: 

w(x) = 
2 ch XR vu2 -xacos XIna ( a+x ) ’ Ixl<a (4.10) 

X>@ 

It follows dram (4.10) that the displacement, stress and other physical quantities are os- 

cillauJry and change sign an infinity of times as x tends to the crack endpoints (x = 
* n). 

For the piezoceramics presented in [l ‘J, the sections of sign-change are located in quite 
small neighborhoods of the crack endpoints 1 x , a. The values of the parameter d = 1 c 

(g + 1) ! (g - 1) in (4.3) are less than three for a considerable number of piezoceramic 
composites with conductors (for example, d E= 1.08 for the composite medium of the 
piezoceramlc FZT-4 with steel, and d = 1.03 for copper), The estimate 1 4 - I f < 5 x 

10-‘@ results [S] for neighborhoods in which the values of the physical quantities are 
oscillatory. 

Therefore, the change in sign of the quantities under consideration occurs in thatsmall 
neighborhood near the crack endpoints in which the solution obtained does not reflect 
the real state because of the departure from the linearized laws of a piezoelectrlc me- 

dium, We use condition (1‘7) to determine the ma~itude of the critical load. 
Taking into account that 

a 

S” aa - xacos xln= ( Q. +x ax ~ ““;‘cl-+y’ 1 
--a 

we obtain an expression relating the crack length to the applied load 

6, = 1/ %wr 
na (l-t_ 4x*) 
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